Mellanox and NexentaEdge Cranks Up OpenStack Storage with 25GbE!

Adapters, Ethernet, OpenStack, Storage, Switches, , , , , , , , , , ,

Mellanox and NexentaEdge High Performance Scale-Out Block & Object Storage  Deliver Line Rate Performance on 25Gbs and 50Gbs Fabrics.

This week at the OpenStack Summit in Austin, we announced that Mellanox end-to-end Ethernet solutions and the NexentaEdge high performance scale-out block and object storage are being deployed by Cambridge University for their OpenStack cloud.

Software-Defined Storage (SDS) is a key ingredient of OpenStack cloud platforms and Mellanox networking solutions, together with Nexenta storage, are the key to achieving efficient and cost effective deployments. Software-Defined Storage fundamentally breaks the legacy storage models that requires a separate Storage Area Network (SAN) interconnect and instead, converges storage onto a single integrated network.

NexentaEdge block and object storage is designed for any petabyte scale, OpenStack or Container-based cloud and is being deployed to support Cambridge’s OpenStack research cloud. The Nexenta OpenStack solution supports Mellanox Ethernet solutions from 10 up to 100 Gigabit per second.

NexentaEdge is a ground-breaking high performance scale-out block and object SDS storage platform for OpenStack environments. NexentaEdge is the first SDS offering for OpenStack to be specifically designed for high-performance block services with enterprise grade data integrity and storage services. Particularly important in the context of all-flash scale-out solutions, NexentaEdge provides always-on cluster-wide inline deduplication and compression, enabling extremely cost-efficient high performance all-flash storage for OpenStack clouds.

Over the last couple of weeks, Mellanox and Nexenta worked jointly to verify our joint solution’s ability to linearly scale cluster performance with the Mellanox fabric line rate. The testbed comprised 3 storage all-flash storage nodes with Micron SSDs and a single block gateway. All 4 servers in the cluster were connected with Mellanox ConnectX-4 Lx adapters, capable of either 25Gbps or 50Gbps Ethernet.

NexentaEdge configured with Nexenta Block Devices on the gateway node demonstrate 2x higher performance as the Mellanox fabric line rate increased from 25Gbps to 50Gbps.


For example, front-end 100% random write bandwidth (with 128KB I/Os) on the NBD devices scaled from 1.3GB/s with 25Gbps networking, to 2.8GB/s with 50Gbps networking. If you consider a 3x replication factor for data protection, these front-end numbers correspond to 25Gbps and 50Gbps line rate performance on the interface connecting the Gateway server to the three storage nodes in the cluster. While NexentaEdge deduplication and compression were enabled, to maximize network load, the dataset used for testing was non-dedupable and non-compressible.

Building and deploying an OpenStack cloud is made easier with a reliable components that have been tested together. Mellanox delivers predictable end-to-end Ethernet networks that don’t lose packets as detailed in the Tolly Report.  NexentaEdge takes full advantage of the underlying physical infrastructure to enable high performance OpenStack cloud platforms that deliver both CapEx and OpEx savings as well as extreme performance scaling compared to legacy SAN-based storage offerings.

About Kevin Deierling

Kevin Deierling has served as Mellanox's VP of marketing since March 2013. Previously he served as VP of technology at Genia Technologies, chief architect at Silver Spring Networks and ran marketing and business development at Spans Logic. Kevin has contributed to multiple technology standards and has over 25 patents in areas including wireless communications, error correction, security, video compression, and DNA sequencing. He is a contributing author of a text on BiCmos design. Kevin holds a BA in Solid State Physics from UC Berkeley. Follow Kevin on Twitter: @TechseerKD

One response to “Mellanox and NexentaEdge Cranks Up OpenStack Storage with 25GbE!”

  1. […] three. So, access to storage is accelerated at a lower system cost.  A good example of this is the NexentaEdge high performance scale-out block and object storage that has been deployed by Cambridge University […]