Storage Predictions for 2017

NVMe Over Fabrics, RDMA, RoCE, Storage, , , ,

Looking at what’s to come for storage in 2017, I find three simple and easy predictions which lead to three more complex predictions.  Let’s start with the easy ones:

  • Flash keeps taking over
  • NVMe over Fabrics remains the hottest storage technology
  • Cloud continues to eat the world of IT


Flash keeps taking over

Every year, for the past four years, has been “The Year Flash Takes Over” and every year flash owns a growing minority of storage capacity and spend, but it’s still in the minority. 2017 is not the year flash surpasses disk in spending or capacity — there’s simply not enough NAND fab capacity yet, but it is the year all-flash arrays go mainstream. SSDs are now growing in capacity faster than HDDs (15TB SSD recently announced) and every storage vendor offers an all-flash flavor. New forms of 3D NAND are lowering price/TB on one side to compete with high capacity disks while persistent memory technologies like 3D-XPoint (while not actually buillt on NAND flash) are increasing SSD performance even further above that of disk. HDDs will still dominate low price, high-capacity storage for some years, but are rapidly becoming a niche technology.


Figure 1: TrendFocus 2015 chart shows worldwide hard drive shipments have fallen since 2010. Flash is one major reason, cloud is another.


According to IDC (Worldwide Quarterly Enterprise Storage Systems Tracker, September 2016) in Q2 2016 the all-flash array (AFA) market grew 94.5% YoY while the overall enterprise storage market grew 0%, giving AFAs 19.4% of the external (outside the server) enterprise storage systems market. This share will continue to rise.


Figure 2: Wikibon 2015 forecast predicts 4-year TCO of flash storage dropped below that of hard disk storage in 2016. 


NVMe over Fabrics (NVMe-oF) remains the hottest storage technology

It’s been a hot topic since 2014 and it’s getting hotter, even though production deployments are not yet widespread. The first new block storage protocol in 20 years has all the storage and SSD vendors excited because it makes their products and the applications running on them work better.  At least 4 startups have NVMe-oF products out with POCs in progress, while large vendors such as Intel, Samsung, Seagate, and Western Digital are demonstrating it regularly. Mainstream storage vendors are exploring how to use it while Web 2.0 customers want it to disaggregate storage, moving flash out of each individual server into more flexible, centralized repositories.

It’s so hot because it helps vendors and customers get the most out of flash (and other non-volatile memory) storage. Analyst G2M, Inc. predicts the NVMe market will exceed $57 Billion by 2020, with a compound annual growth rate (CAGR) of 95%. They also claim say 40% of AFAs will use NVMe SSDs by 2020, and hundreds of thousands of those arrays will connect with NVMe over Fabrics.


Figure 3: G2M predicts incredibly fast growth for NVMe SSDs, servers, appliances, and NVMe over Fabrics.


Cloud continues to eat the world of IT 

Nobody is surprised to hear cloud is growing faster than enterprise IT. IDC reported cloud (public + private) IT spending for Q2 2016 grew 14.5% YoY while traditional IT spending shrank 6% YoY. Cloud offers greater flexibility and efficiency, and in the case of public cloud the ability to replace capital expense investments with a pure OpEx model.

It’s not a panacea, as there are always concerns about security, privacy, and speed of access. Also, larger customers often find that on-premises infrastructure — often set up as private cloud — can cost less than public cloud in the long run. But there is no doubting the inexorable shift of projects, infrastructure, and spending to the cloud. This shift affects compute (servers), networking, software, and storage, and drives both cloud and enterprise customers to find more efficient solutions that offer lower cost and greater flexibility.


Figure 4: IDC Forecasts cloud will consume >40% of IT infrastructure spending by 2020. Full chart available at:


OK Captain Obvious, Now Make Some Real Predictions!

Now let’s look at the complex predictions which are derived from the easy ones:

  • Storage vendors consolidate and innovate
  • Fibre Channel continues its slow decline
  • Ceph grows in popularity for large customers
  • RDMA becomes more prevalent in storage


Traditional storage vendors consolidate and innovate

Data keeps growing at over 30% per year but spending on traditional storage is flat. This is forcing vendors to fight harder for market share by innovating more quickly to make their solutions more efficient, flexible, flash-focused, and cloud-friendly. Vendors that previously offered only standalone arrays are offering software-defined options, cloud-based storage, and more converged or hyper-converged infrastructure (HCI) options. For example, NetApp offers options to replicate or back up data from NetApp boxes to Amazon Web Services, Dell/EMC HDS, and IBM all sell converged infrastructure racks. In addition, startup Zadara Storage offers enterprise storage-as-a-service running either in the public cloud or as on-premises private cloud.

Meanwhile, major vendors all offer software versions of some of their products instead of only selling hardware appliances. For example, EMC ScaleIO, IBM Spectrum Storage, IBM Cloud Object Storage (formerly CleverSafe), and NetApp ONTAP Edge are all available as software that runs on commodity servers.

The environment for flash startups is getting tougher because all the traditional vendors now offer their own all-flash flavors. There are still startups making exciting progress in NVMe over Fabrics, object storage, hyper-converged infrastructure, data classification, and persistent memory, but only a few can grow into profitability on their own. 2017 will see a round of acquisitions as storage vendors who can’t grow enough organically look to expand their portfolios in these areas.


Fibre Channel Continues its Downward Spiral

One year ago I wrote a blog about why Fibre Channel (FC) is doomed and all signs (and analyst forecasts) point to its continued slow decline. All the storage trends around efficiency, flash, performance, big data, Ceph, machine learning, object storage, containers, HCI, etc. are moving against Fibre Channel. (Remember the “Cloud Eats the World” chart above? They definitely don’t want to use FC either.) The only thing keeping FC hopes alive is the rapid growth of all-flash arrays, which deploy mostly FC today because they are replacing legacy disk or hybrid FC arrays. But even AFAs are trending to using more Ethernet and InfiniBand (occasionally direct PCIe connections) to get more performance and flexibility at lower cost.

The FC vendors know the best they can hope for is to slow the rate of decline, so all of them were betting on growing their Ethernet product lines. More recently the FC vendors (Emulex, QLogic, Brocade) have been acquired by larger companies, but not as hot growth engines but rather so the larger companies can milk the cash flow from the expensive FC hardware before their customers convert to Ethernet and escape.


Ceph grows in Popularity for Large Customers

Ceph — both the community version and Red Hat Ceph Storage — continues to gain fans and use cases. Originally seen as suited only for storing big content on hard drives (low-cost, high-capacity storage), it’s now gained features and performance making it suitable for other applications. Vendors like Samsung, SanDisk (now WD), and Seagate are demonstrating Ceph on all-flash storage, while Red Hat and Supermicro teamed up with Percona to show Ceph works well as database storage (and is less expensive than Amazon storage for running MySQL).  I wrote a series of blogs on Ceph’s popularity, optimizing Ceph performance, and using Ceph for databases.

Ceph is still the only storage solution that is software-defined, open source, scale-out and offering enterprise storage features (though Lustre is approaching this as well). Major contributors to Ceph development include not just Red Hat but also Intel, the drive/SSD makers, Linux vendors (Canonical and SUSE), Ceph customers, and, of course, Mellanox.

In 2016, Ceph added features and stability to its file/NAS offering, CephFS, as well as major performance improvements for Ceph block storage. In 2017, Ceph will improve performance, management, and CephFS even more while also enhancing RDMA support. As a result, its adoption grows beyond its traditional base to add Telcos, cable companies, and large enterprises who want a scalable software-defined storage solution for OpenStack.



RDMA More Prevalent in Storage

RDMA, or Remote Direct Memory Access, has actually been prevalent in storage for a long time as a cluster interconnect and for HPC storage. Just about all the high-performance scale-out storage products use Mellanox-powered RDMA for their cluster communications — examples include Dell FluidCache for SAN, EMC XtremIO, EMC VMAX3, IBM XIV, InfiniDat, Kaminario, Oracle Engineered Systems, Zadara Storage, and many implementations of Lustre and IBM Spectrum Scale (GPFS).

The growing use of flash media and intense interest in NVMe-oF are accelerating the move to RDMA. Faster storage requires faster networks, not just more bandwidth but also lower latency, and in fact the NVMe-oF spec requires RDMA to deliver its super performance.


Figure 5: Intel presented a chart at Flash Memory Summit 2016 showing how the latency of storage devices is rapidly decreasing, leading to the need to decrease software and networking latency with higher-speed networks (like 25GbE) and RDMA.

In addition to the exploding interest in NVMe-oF, Microsoft has improved support for RDMA access to storage in Windows Server 2016, using SMB Direct and Windows Storage Spaces Direct, and Ceph RDMA is getting an upgrade. VMware has enhanced support for iSER (iSCSI Extensions for RDMA) in VSphere 2016 and more storage vendors like Oracle (in tape libraries) and Synology have added iSER support to enable accelerated client access. On top of this, multiple NIC vendors (not just Mellanox) have announced support for RoCE (RDMA over Converged Ethernet) on 25, 40, 50, and 100Gb Ethernet speeds. These changes all mean more storage vendors and storage deployments will leverage RDMA in 2017.


So Let’s Get This Party Started

2017 promises to be a super year for storage innovation. With technology changes, disruption, and consolidation, not every vendor will be a winner and not every storage startup will find hockey-stick growth and riches, but it’s clear the storage hardware and software vendors are working harder than ever, and customers will be big winners in many ways.



About John F. Kim

John Kim is Director of Storage Marketing at Mellanox Technologies, where he helps storage customers and vendors benefit from high performance interconnects and RDMA (Remote Direct Memory Access). After starting his high tech career in an IT helpdesk, John worked in enterprise software and networked storage, with many years of solution marketing, product management, and alliances at enterprise software companies, followed by 12 years working at NetApp and EMC. Follow him on Twitter: @Tier1Storage

Comments are closed.